作为一名老师,就难以避免地要准备教案,编写教案助于积累教学经验,不断提高教学质量。优秀的教案都具备一些什么特点呢?下面是小编为大家收集的《整式的加减》教案,仅供参考,欢迎大家阅读。
《整式的加减》教案1回顾与反思
师生共同讨论得出结论,教师指出注意的问题
沙场练兵
一、比一比看谁最快、最棒:
1、-0.4ab3的系数是 次数是 。
2、多项式3x2+2x-3x-4的最高次项是 ,同类项是 ,常数项是 。
3、去括号3a-(2ab-3b2 +4)=
4、与2a-1的和为7a2-4a+1的多项式是
二、应用知识,提高能力,你一定行:
已知小明的年龄是岁,小红的年龄比小明的2倍少4岁,小华的年龄比小红的年龄的一半多一 岁,求三个人的年龄和。
学生抢答
学生独立思考,然后在本上做,找一名同学板书。
培养学生运算能力和分析问题解决问题的能力。
回顾与反思
本节课的学习你有哪些收获?
应注意什么问题?(出示本章的知识结构图:)
师生互动梳理知识。弄清本章所学的概念、法则和有关的知识内容以及它们之间的联系与区别,并写出知识结构图。
布置
作业P192 6、8、11
板书设计:
回顾与反思
一、知识结构
二、1、整式有关概念注:单次
三、整式加减(注:同类项的确定,去括号的应注意问题)
教学反思:
本节课在学生充分思考的基础上,开展小组交流和全班交流。使学生在反思交流的过程中,师生共同建立知识体系得出本章知识结构图,在整个过程中不仅注重对知识的总结,更注重对知识形成过 程的反思归纳。留给了学生充足的时间和空间,反思知识的发生发展过程。但由于留给学生时间较长,课时感到很紧张,今后要注意改进。
《整式的加减》教案2教学目标
1、会进行简单的整式加、减运算、
2、能说明整式加、减中每一步运算的算理,逐步发展有条理的思考和表述的能力、
重、难点
会进行简单的整式加、减运算、
教学过程
一、情境创设
1、操作:
(1)准备三张如下图所示的卡片
(2)思考:
用它们拼成各种形状不同的四边形,并计算拼成的四边形的周长、
二、探索活动
活动一:
1、整式的加减运算要进行哪些步骤?
进行整式的加减运算时,____________________________________________
《3、6整式的加减》同步测试
1、三个小队植树,第一队种x棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树________棵、
2、甲仓库有煤1500吨,乙仓库有煤800吨,从甲仓库每天运出煤5吨,从乙仓库每天运出煤2吨,求m天后,甲、乙两仓库一共还有多少吨煤,并求出当m=30时,甲、乙两仓库一共存煤的数量?
3、6整式的加减:测试
1、已知三角形的第一边长为2a+b,第二边比第一边长a-b,第三边比第二边短a,求这个三角形的周长?
2、某同学做了一道数学题:“已知两个多项式为A,B,B=3x﹣2y,求A﹣B的值、”他误将“A﹣B”看成了“A+B”,结果求出的答案是x﹣y,那么原来的A﹣B的值应该是( )
A、4x﹣3y B、﹣5x+3y C、﹣2x+y D、2x﹣y
《整式的加减》教案3一、教学目标
知识与技能:1. 理解同类项的概念,并能正确辨别同类项。
2. 掌握合并同类项的法则,能进行同类项的合并。
3.会利用合并同类项将整式化简。
过程与方法:1. 探索在具体情境中用整式表示事物之间的数量关系,发展学生的抽象概括能力。
2.通过类比数的运算律得出合并同类项的法则,在教学中渗透类比的数学思想。
情感、态度与价值观:1.通过参与同类项、合并同类项法则的探究活动,提高学习数学的兴趣。
2.培养学生合作交流的意识和探索精神。
二、教学重点与难点
重点:合并同类项法则。
难点:对同类项概念的理解以及合并同类项法则的应用。
三、学习课时(四课时第一课时)
四、重、难点突破
通过实际问题引出同类项和合并同类项概念的探讨,在学习过程中,让学生自己经历探索与交流的活动,自主得到同类项的概念,并利用数的分配律观察并归纳出合并同类项的法则。
五、教学方法
讨论及探究式教学方法
《整式的加减》教案4教学目的:
1。经历及字母表示数量关系的过程,发展符号感;
2。会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力。
教学重点:
会进行整式加减的运算,并能说明其中的算理。
教学难点:
正确地去括号、合并同类项,及符号的正确处理。
教学过程:
一、课前练习:1。填空:整式包括_____________和_______________
2。单项式的系数是___________、次数是__________
3。多项式3m3—2m—5+m2是_____次______项式,其中二次项系数是______,一次项是__________,常数项是____________。
4。下列各式,是同类项的一组是( )(A)22x2y与yx2 (B)2m2n与2mn2 (C)ab与abc
5。去括号后合并同类项:(3a—b)+(5a+2b)—(7a+4b)。
二、探索练习:
1。如果用a、b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为_____________交换这个两位数的十位数字和个位数字后得到的两位数为__________________,这两个两位数的和为_________________________________。
2。如果用a、b、c分别表示一个三位数的百位数字、十位数字和个位数字,那么这个三位数可以表示为___________,交换这个三位数的百位数字和个位数字后得到的三位数为______________,这两个三位数的差为___________________________。
……此处隐藏7256个字……,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:利用分配律,可以去括号,合并同类项,得:
100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60
100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60
我们知道,化简带有括号的整式,首先应先去括号.
上面两式去括号部分变形分别为:
+120(t-0.5)=+120t-60③-120(t-0.5)=-120+60④
比较③、④两式,你能发现去括号时符号变化的规律吗?
思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.
特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).
利用分配律,可以将式子中的括号去掉,得:
+(x-3)=x-3(括号没了,括号内的每一项都没有变号)
-(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)
去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.
二、范例学习
例1.化简下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.
解答过程按课本,可由学生口述,教师板书.
例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.
(1)2小时后两船相距多远?
(2)2小时后甲船比乙船多航行多少千米?
教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.
思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.
解答过程按课本.
去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.
三、巩固练习
1.课本第68页练习1、2题.
2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]
思路点拨:一般地,先去小括号,再去中括号.
四、课堂小结
去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.
学生作总结后教师强调要求大家应熟记法则,并能根据法则进行去括号运算。法则顺口溜:去括号,看符号:是“+”号,不变号;是“―”号,全变号。
五、作业布置
1.课本第71页习题2.2第2、3、5、8题.
教学后记:
①通过回顾已经学过的知识,通过观察、比较,得到了整式的去括号法则。这样的通过实例,设计起点低,学生学起来更自然,对新知识更容易接受。
②在总结出去括号法则后,又给出了一个顺口溜,这是考虑到学生年龄小,顺口溜更便于记忆,而且也增加了学习的情趣。
③安排了例1到例5的一个组题,进行由浅入深、循序渐进的训练,以使学生更好地全方位地掌握去括号法则?另外,还安排了某些变式训练,既能让学生进一步熟悉去括号法则,又训练了他们的逆向思维。
《整式的加减》教案15知识目标:
(1)使学生在掌握合并同类项的基础上,掌握去括号法则。
(2)正确地进行简单的整式加减运算。
能力目标:培养学生基本的运算技巧和能力。
情感目标:使学生逐渐形成事物变化、相互联系和相互转化的观点,并在学习中培养学生良好的学习习惯、独立思考、勇于探索的精神。
教学重点、难点:
重点 去括号法则。 教学
难点 正确运用去括号法则,减少运算中的符号错误。
教学用具: 多媒体
教 学 过 程 :
(一)、情景引入
1、多媒体展示游戏:把我的出生月份数乘2,加10,再把和乘5,加上我家的人口数,结果为133
你出生于8月份,你家有3口人
2、猜数游戏的数学原理常常与代数式的运算有关
3、知识梳理
-2x+3y-4z 共有 项,其中第三项是: 。
1、写出 2a2b 的一个同类项:
2、已知4a2b3与a2mbn-1是同类项,则m= ____,n=_____.
(二)实践应用, 拓展延
如图4-7,要计算这个图形的面积,你有几种不同的方法?请计算结果。
2、用分配律计算:
(1) +(a-b+c)
(2) -(a-b+c)
3、代数式运算的去括号法则:
括号前是+号,把括号和它前面的+号去掉,括号里各项都不变号;括号前是-号,把括号和它前面的-号去掉,括号里各项都改变符号
4、顺口溜
去括号,看符号
是+号,不变号
是-号,全变号
5、辩一辩:指出下列各式是否正确?如果错误,请指出原因.
(1) a-(b-c+d) = a-b+c+d
(2) -(a-b)+(-c+d)= a+b-c-d
(3) a-3(b-2c)=a-3b+2c
(4) x-2(-y-3z+1)=x-2y+6z
6.注意:(1)去括号时应将括号前面的符号连同括号一起去掉.
(2)要注意括号前面是 -号时,去掉括号后, 括号里各项都要改变符号;不能只改变某几项而忘记改变其余的符号
(3)若括号前面是数字因数时,.应乘以括号里的每一项,不要漏乘.
7:练一练
(三)作业